

\geq

Space Interferometry Mission

Microdynamic Materials Properties of Composites for Space Applications

6th Biannual Microdynamics Workshop NASA Jet Propulsion Lab, Pasadena, CA 23 June 1999

> David B. Powell, Mgr., Materials Development Christian Pelz, Engr. Intern Composite Optics, Inc, 9617 Distribution Ave, San Diego, CA 92121

Presentation Outline

Space Interferometry Mission

Materials Properties for Macro Damping

- Typical algorithms and terminology
- Composites vs. metals
- Parameters influencing macrodynamic materials properties

Toward Microdynamic Materials Properties

- Typical materials and properties for space applications
- Some empirical and anecdotal information
- Optimizing microdynamic performance
- Screening test matrix for space materials

Microcracking as an Input Energy

- Microcracking explained /criteria
- Space composites performance
- Proposed experiments

Damping Terminology

\geq

Space Interferometry Mission

Term	Symbol	Definition $c_c = 2 \text{ in } \omega_p = 2 \sqrt{km}$			
% Critical Damping Factor	e _e				
Viscous Damping (critical damping ratio)	ζ	$\zeta = \frac{\epsilon}{2\pi \omega_{ss}} = \frac{\epsilon}{c_{c}}$			
Structural Damping	g	$g = \eta = \frac{1}{Q} = 2 \zeta$			
Loss Factor (loss tangent, tano)	η	$\eta = 2\zeta$ $G' = G(1 + i\eta)$			
Quality Factor	Q	$Q = \frac{1}{\eta} \approx \frac{1}{2\zeta}$			
Logarithmic Decay	δ	$\zeta = \frac{\delta}{2\pi}$ where $\delta = \ln\left(\frac{x_1}{x_{i+1}}\right)$			
Specific Damping Capacity		$=\frac{2}{Q}=2 = 4$			

Space Interferometry Mission

- Probable Micro-Models for Damping
 - Microplastic or viscoelastic phenomena associated with matrix
 - Relative slippage at the fiber-matrix interface
- Given: Matrix damping capacity & fiber/matrix moduli:
 - Can estimate internal damping of composite with known V_f
- Typical levels for space structures
 - = 0.5to 2% critical
 - Optical benches are lowest, integral, in-plane designs

Uni-Directional Lamina Damping Estimate___

Space Interferometry Mission

June 22, 1999

Longitudinal Shear Specific Damping Capacity

$$LT = \frac{\left(1 - V_f\right)(G + 1)^2 + V_f(G - 1)^2}{G(1 + V_f) + 1 - V_f} G(1 - V_f) + 1 + V_f$$

Longitudinal Tension/Compression Specific Damping Capacity

$$L = m \left(1 - V_f \right) \frac{E_m}{E_L}$$

Where, based on rule of mixtures

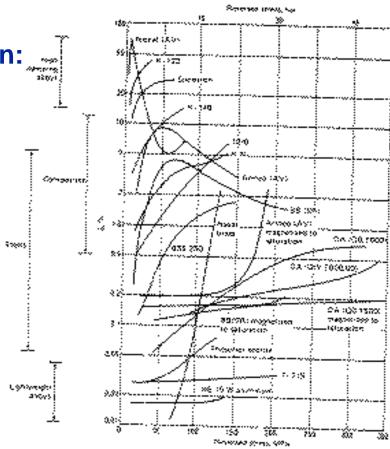
$$E_L = E_f V_f + E_m \left(1 - V_f \right)$$

Transverse Specific Damping Capacity

T m

Laminate Damping Estimates	
Fiber Properties	
Name: <u>T300</u>	
Fiber Vol Fraction [%]:	55%
Fiber Longitudinal Modulus E _f [Msi]:	33
Fiber Shear Modulus G _f [Msi]:	3.2
Matrix Properties	
Name: 954-3	
Matrix Longitudinal Modulus E _m [Msi]:	0.4
Matrix Shear Modulus G _m [Msi]:	0.148
Matrix SDC m [%]:	15.00%
(SDC: Specific Damping Capacity)	10.0070
Uni-Directional Lamina Damping Properties	
, <u> </u>	
Shear Modulus Ratio G =	21.622
Longitudinal Young's Modulus E _L [Msi] = (Based on rule of mixtures)	18
Lamina Longitudinal Tension/Compression SDC	0.15%
Lamina Longitudinal Shear SDC LT [%] =	13.14%
Lamina Transverse Tension/Compression SDC _T [%] =	9.84%
Longitudinal Tension/Compression	
Lamina Critical Damping ratio [%] =	0.01%
Lamina Loss Factor =	0.02%
Lamina Quality Factor Q =	4266
Longitudinal Shear	
Lamina Critical Damping ratio [%] =	1.05%
Lamina Loss Factor =	2.09%
Lamina Quality Factor Q =	48
Transverse Tension/Compression	
Lamina Critical Damping ratio [%] =	0.78%
	1.57%
Lamina Loss Factor =	

Composite Materials Damping


\geq

Space Interferometry Mission

- Composite material internal damping is highly dependent on:
 - Load levels (direct)
 - Loading frequency (direct)
 - Temperature (direct)
 - Composite Material:
 - Moduli (extension, shear) (ind.)
 - Fiber volume fraction (ind.)
 - Ply orientation (thickness?)
 - Fiber drives:
 - Extensional moduli
 - Resin drives:
 - Shear and transverse moduli
 - Matrix damping capacity

Typical Composites for Space Structures

Space Interferometry Mission

- By Structural Type
- Basic Requirements
- Typical Fiber and Resin Constituents

Structure Type	Requirements		Reinforcing Fibers Matrix Resi			
	Iso. Modulu	is CTE	Outgas/CM	IEPAN-	Pitch-based	Type
	(10E6 psi)	(ppm/°C)	based		
1. Zero CTE Space	12 to 16	<±0.09	Very Low	M55J,	P75, K135,	Cyanate
				M60J	K13710,	
					XN50A	
2. Stiff Structure	15 to 20	-3 to +4	NASA Spe	dΜ55J,	K135, XN50	Epoxy or
				M60J	K13710,	Cyanate
					K13C, P75	
3. Aluminum Equiva	lent >10	<23	NASA Spe	M40J,	K63312	Ероху
				M46J		
4. Fabric Skins / SA	\$3 (Kev) to 4	0 ±2	NASA Spec	:M40J,	XN50A, K13	Epoxy or
				M55J,	K13C, XN70	Cyanate
				M60J		

June 22, 1999

Internal Damping Performance of Space Composites

Space Interferometry Mission

Load levels

Typically low (good)

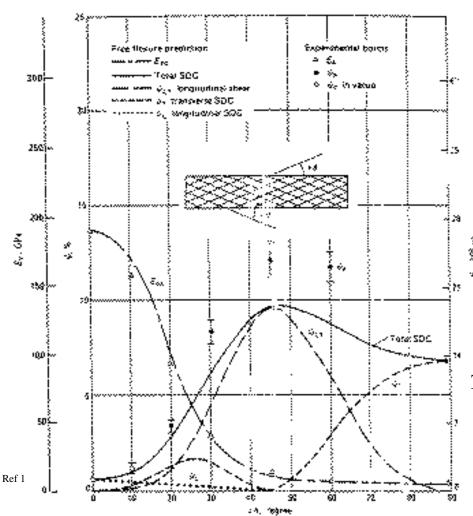
Loading Frequencies

- Structural: first modes 4 to 150 Hz, ~low (bad)
- Instrument: 100 to ? Hz for SIM, NGST, etc. (good?)

Composite Materials for Space

- High Stiffness: in-plane and on-axis (bad!)
- Low Stiffness: transverse, shear moduli (good, but avoided)
- Matrix Damping Capacity: epoxies, cyanates, VEMs (good)
- Adhesives, Bonded Joints: continuous, but good damping

Laminate Damping Variation w/ Ply Angle



S

Space Interferometry Mission

$$=\frac{1}{s_{11}} \frac{T}{E_T} \sin^4 + \frac{LT}{G_{LT}} \sin^2 \cos^2$$

Bias Plies +/- 45deg:

chart? 10%

?
$$=\frac{1}{4}=0.008 \text{ or } 0.8\%$$

T300/954-3 [0/45/90/135] Laminate:

? 0.01 or 10%

<u>T300/IM8 Hybrid $[0_n/+45/-45/0_n/...]$ Laminate</u>:

? 0.006 or 0.6%

Ref: Adams, Robert D., "Damping Properties Analysis of Composites", ASM International, Engineered Materials Handbook, Vol 1.

Space Interferometry Mission

Pitch versus PAN

- Several sporting goods references cite much better damping from pitch-based than PAN-based fibers of the same moduli
- Could be related to higher micro-strain levels in matrices around pitch fibers or to a difference in fiber damping capacity

Interlayers Work

 Numerous references (AFRL SPICE program, others) have shown visco-elastic materials (VEMs) like poyurethanes, silicones do increase damping without hampering structural performance

Use Materials With Hysterisis

- Early non-linearity in shear responses
- VEMs which can be engineered within the glass transition zone

Improving Space Composite Damping

Space Interferometry Mission

Extensional Moduli

- Use highly-off axis laminates
- Consider lower modulus fibers (Carbon, Glass, Kevlar)
- Design 'soft' boundaries / interfaces where possible

Shear and Transverse Moduli

Use lower modulus resins (e.g. cyanate vs. epoxy)

Matrix Damping Capacity

- Choose resins with 'early' non-linear shear responses
- Use interlaminar VEMs, or resin rich layers
- Load resins with low E or high damping phases

Other

- Choose fibers with higher damping (pitch vs. PAN ?)
- Use smaller ply thicknesses (more discreet interlaminar layers)

- Parametric Test Matrix
- Choose Parameters and # of Settings
 - Based on available budgets

Test Types	Test Conditions		Materials	
	Type, Settings	Temps.	Fibers	Resins
Damping Ratio	High & Low on Freq. & Amp.	77 K, 300 K	M55J (78), K13710 (90), T300 (33), K1100 (140), Kevlar	Modifieds,
Extensional Modulus	Uni TN or CM			
Shear Modulus	±45 TN, losipescu			
Transverse Modulus	90° TN or CM, FWT			
Fiber Volume	50% & 60%			

Space Interferometry Mission

June 22, 1999 Page - 12

Microcracking in Space Composites

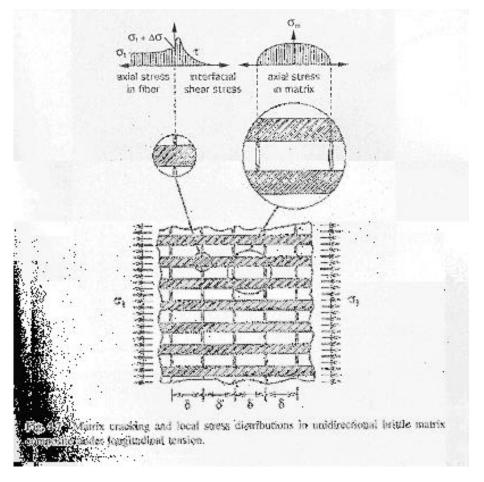
Space Interferometry Mission

Will Probably Happen Due To:

- Temps below about -100°C
- Zero CTE laminates have highly negative CTE fibers
- Ply thicknesses typically 2.5 to 5 mils (64 to 127 microns)
- Current resin properties: cyanates are better, but not that good.

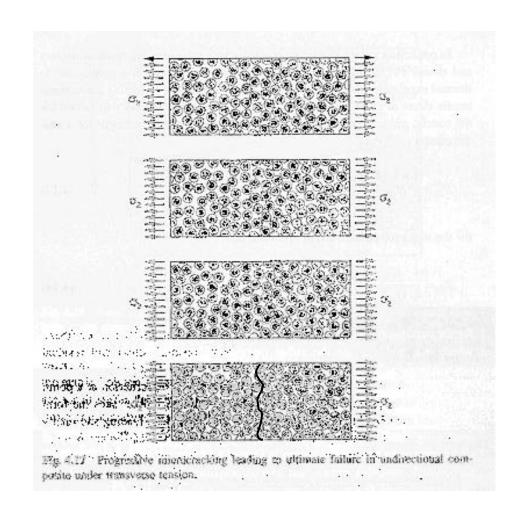
Mitigating Techniques

- Layup orientations with gradual transition
 - I.e. (0,45,90, 135)XS better than (0, 90, +45, -45)XS
- Thinner plies
 - 25 micron possible, but expensive and limits fiber choices
- Higher strain matrices
 - Elastomer loading, high strain base resins
 - VEMs like polyurethane as interlaminar layers



Microcracking Micromechanics

Space Interferometry Mission • Negative CTE of neighboring plies adds to tensile thermal stress in resin on cool down until resin fails


Microcracking Damage Progression

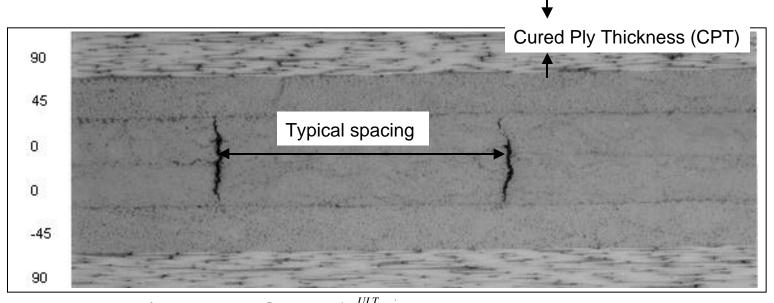
\geq

Space Interferometry Mission

Ref: Daniel, Isaac M. and Ishai, Ori, "Engineering Mechanics of Composite Materials," p. 100

June 22, 1999

Microcracking in a Space Composite


 \geq

Space Interferometry Mission

Resin Type / Ultimate Strain ($^{ULT}_{RESIN}$)
Coefficient of Thermal Expansion (CTE) of the fiber (FIBER)
Fiber Volume Fraction (FV)
Typical spacing between cracks = $f(^{ULT}_{RESIN}, ^{FIBER}, FV, ^{CPT})$

Material: M55J / 934

Ply Thickness: 4.5 mils (114 microns)

Fiber Volume Fraction: 59%

Microcracking Performance of Space Composites

Resin	Ply Thickness (MILS)	Cracks/Inch (After No. of Cycles)				
System		0 Cycles	10 Cycles	50 Cycles	100 Cycles	
934	5.0	3.0	33.0	53.5	56.0	
954-3	5.0	0.5	4.0	6.5	10.0	
934	2.5	0	2.0	2.5	3.0	
954-3	2.5	0	0	0	0	

Notes:

- 1. P-75 laminates, (45, 0, -45, 90)_{3S}, 60% FV, 2 in. x 2 in.
- 2. Cycle: -- 150° F to +150° F and back @ 20° F/min., 5 min. dwell at extremes.
- 3. Data taken at 50x magnification; values are average of 0 $^{\circ}$ normal and 90 $^{\circ}$ normal edges.

Proposed Microcracking Experiments

Space Interferometry Mission

Create Laminates Which Will Microcrack

- M55J, (0,90)XS or (0,45,90,135)XS
- Cyanate and epoxy resins

Monitor During Thermal Cycles (to 196 K, ~ 20 cycles)

- CU Microdynamics Lab, or
- Adapt COI Liquid Helium CTE facility
- Acoustic emission measured
- Dynamic response measured

Characterize:

- Frequencies
- Energy, amplitude
- Internal composite damping for microcracking input